Zahlen bis zur Million verstehen
Lehrplan – Zahlen und Operationen
In diesem Kapitel arbeitest du mit Zahlen bis zur Million. Du lernst, große Zahlen richtig zu lesen, zu schreiben, zu vergleichen und zu ordnen.
Du nutzt das Stellenwertsystem sicher und verstehst, wie Einer, Zehner, Hunderter, Tausender, Zehntausender und Hunderttausender zusammengehören. So kannst du Zahlen genau einordnen und besser miteinander vergleichen.
Außerdem erkennst du Zahlbeziehungen, zum Beispiel Nachbarzahlen, Verdoppeln und Halbieren. Du arbeitest mit Zahlenfolgen und Mustern und lernst, wie sich Zahlen regelmäßig verändern.
Viele Beispiele und Übungen helfen dir dabei, große Zahlen übersichtlich zu strukturieren und sicher mit ihnen umzugehen.
Was wirst du in diesem Kapitel lernen?
- Ich kann Zahlen bis zur Million sicher lesen, schreiben und ordnen.
- Ich kann Zahlen vergleichen und auf der Zahlengeraden darstellen.
- Ich verstehe das Stellenwertsystem bis zu den Hunderttausendern.
- Ich kann Zahlen zerlegen und sinnvoll runden.
- Ich erkenne Zahlbeziehungen wie Nachbarzahlen, Verdoppeln und Halbieren.
- Ich kann einfache Zahlenfolgen und Muster fortsetzen und beschreiben.
1. Zahlen bis zur Million lesen und schreiben
Zahlen bis zur Million bestehen aus bis zu sieben Stellen. Jede Stelle hat einen festen Wert, zum Beispiel Einer, Zehner, Hunderter, Tausender, Zehntausender, Hunderttausender und Million.
Beim Lesen einer Zahl beginnt man immer links mit der größten Stelle. Beim Schreiben von Zahlen hilft es, das Zahlwort in Teile zu zerlegen und diese den passenden Stellen zuzuordnen.
Der sichere Umgang mit großen Zahlen ist wichtig, um Angaben aus dem Alltag, wie Einwohnerzahlen oder Entfernungen, richtig zu verstehen.
Beispiel: Die Zahl 504 218 bedeutet: 5 Hunderttausender, 0 Zehntausender, 4 Tausender, 2 Hunderter, 1 Zehner und 8 Einer.
Hinweis: Auch eine 0 hat eine wichtige Aufgabe, denn sie hält den Platz einer Stelle frei.
2. Zahlen vergleichen, ordnen und runden
Beim Vergleichen von Zahlen wird festgestellt, welche Zahl größer, kleiner oder gleich ist. Dazu vergleicht man die Stellen von links nach rechts, beginnend mit der höchsten Stelle.
Zahlen ordnen heißt, sie der Größe nach anzuordnen, zum Beispiel von klein nach groß. Das hilft, Zahlen besser zu überblicken.
Beim Runden werden Zahlen vereinfacht, indem sie auf Zehner, Hunderter, Tausender oder größere Einheiten gerundet werden.
Beispiel: 735 000 ist kleiner als 742 000.
738 462 gerundet auf Tausender ergibt 738 000.
Hinweis: Beim Runden entscheidet immer die nächstkleinere Stelle.
3. Stellenwertsystem und Zahlbeziehungen
Im Stellenwertsystem bestimmt der Platz einer Ziffer ihren Wert. Eine 5 kann je nach Stelle fünf Einer, fünf Hunderter oder fünf Hunderttausender bedeuten.
Zahlbeziehungen zeigen, wie Zahlen miteinander zusammenhängen, zum Beispiel durch Zerlegen, Verdoppeln oder Halbieren. Dadurch lassen sich Zahlen besser verstehen und vergleichen.
Das Wissen über Stellenwerte und Zahlbeziehungen erleichtert viele Rechenaufgaben.
Beispiel: 400 000 + 30 000 + 2 000 = 432 000
Hinweis: Der Wert einer Ziffer ändert sich mit ihrer Position in der Zahl.
Beispielaufgaben
Versuche die Aufgaben zunächst selbst zu lösen.
Mit einem Klick kannst du dir die Lösung anzeigen lassen.
Beispiel 1
Ordne die folgenden Zahlen der Größe nach (von der kleinsten zur größten Zahl):
245 000, 254 000 und 245 500.
Lösung:
Ich vergleiche die Zahlen Schritt für Schritt:
Alle Zahlen beginnen mit 245 000 oder 254 000.
245 000 und 245 500 haben die gleiche Hunderttausender- und Zehntausenderstelle.
Bei diesen beiden Zahlen vergleiche ich die Hunderter:
245 000 < 245 500254 000 ist größer als beide, da die Zehntausenderstelle 5 größer ist als 4.
Antwort:
245 000 < 245 500 < 254 000
Beispiel 2
Runde die Zahl 387 462 auf den Tausender.
Lösung:
Ich schaue auf die Hunderterstelle, denn sie entscheidet über das Runden auf Tausender.
Die Hunderterstelle ist 4.
Da 4 kleiner als 5 ist, wird abgerundet.
Antwort:
387 462 ≈ 387 000
Übungsaufgaben
Versuche die Aufgaben zunächst selbst zu lösen.
Mit einem Klick kannst du dir die Lösung anzeigen lassen.
Übung M4-K1-U1
Schreibe die Zahl
„dreihundertsechsundzwanzigtausend vierhundertacht“
als Ziffer. Verwende Leerzeichen als Tausendertrennzeichen.
Lösung:
Dreihundertsechsundzwanzigtausend = 326 000
Vierhundertacht = 408
Zusammen ergibt das: 326 408
Kompetenz: Zahlen lesen, verstehen und korrekt schreiben
Diese Aufgabe fördert das sichere Umsetzen von Zahlwörtern in Ziffern und das Verständnis großer Zahlen im Stellenwertsystem.
Übung M4-K1-U2
Welche Zahl ist größer: 704 215 oder 694 982?
Begründe deine Entscheidung mithilfe der höchsten unterschiedlichen Stelle.
Lösung:
Ich vergleiche die Hunderttausenderstellen:
704 215 → Hunderttausenderstelle: 7
694 982 → Hunderttausenderstelle: 6
Da 7 größer ist als 6, ist auch die ganze Zahl größer.
Antwort:
704 215 ist größer.
Kompetenz: Zahlen vergleichen und begründen
Die Schülerinnen und Schüler lernen, Zahlen systematisch zu vergleichen und ihre Entscheidung fachlich zu begründen.
Übung M4-K1-U3
Zeichne eine Zahlengerade von 0 bis 1 000 000 und markiere die Mitte.
Welche Zahl steht dort?
Lösung:
Die Mitte zwischen 0 und 1 000 000 ist:
1 000 000 : 2 = 500 000
Antwort:
In der Mitte der Zahlengeraden liegt 500 000.
Kompetenz: Zahlen auf der Zahlengeraden darstellen
Diese Aufgabe stärkt das räumliche Zahlverständnis und den Umgang mit sehr großen Zahlen.
Übung M4-K1-U4
Zerlege die Zahl 684 739 in ihre Stellenwerte.
Lösung:
684 739 =
600 000 + 80 000 + 4 000 + 700 + 30 + 9
Kompetenz: Stellenwertsystem sicher anwenden
Die Schülerinnen und Schüler vertiefen ihr Verständnis für den Aufbau großer Zahlen und deren Zerlegung.
Übung M4-K1-U5
Runde die Zahl 129 501 auf den nächsten Zehntausender.
Lösung:
Ich schaue auf die Tausenderstelle.
Diese ist 9.
Da 9 ≥ 5 ist, wird aufgerundet.
Antwort:
129 501 ≈ 130 000
Kompetenz: Zahlen gezielt runden
Diese Aufgabe fördert den sicheren Umgang mit Rundungsregeln bei großen Zahlen.
Übung M4-K1-U6
Nenne den Vorgänger und den Nachfolger der Zahl 400 000.
Lösung:
Vorgänger: 399 999
Nachfolger: 400 001
Kompetenz: Nachbarzahlen bestimmen
Die Schülerinnen und Schüler lernen, Zahlenfolgen korrekt fortzuführen und Zahlbeziehungen zu erkennen.
Übung M4-K1-U7
Verdopple die Zahl 248 000.
Lösung:
248 000 · 2 = 496 000
Kompetenz: Zahlbeziehungen gezielt nutzen
Diese Aufgabe stärkt das Verständnis für Verdoppeln als grundlegende Rechenstrategie.
Übung M4-K1-U8
Halbiere die Zahl 360 000.
Lösung:
360 000 : 2 = 180 000
Kompetenz: Zahlbeziehungen sicher anwenden
Die Schülerinnen und Schüler üben das Halbieren großer Zahlen ohne schriftliches Rechnen.
Übung M4-K1-U9
Setze die Zahlenfolge fort:
25 000 – 50 000 – 75 000 – ______ – ______
Lösung:
Die Zahlen werden jeweils um 25 000 größer.
Nächste Zahlen:
100 000 und 125 000
Kompetenz: Zahlenfolgen erkennen und fortsetzen
Diese Aufgabe fördert das Erkennen regelmäßiger Muster in Zahlenfolgen.
Übung M4-K1-U10
Finde die Regel der Zahlenfolge:
900 000 – 800 000 – 700 000 – ______
Lösung:
Die Zahlen werden jeweils um 100 000 kleiner.
Nächste Zahl: 600 000
Kompetenz: Muster und Strukturen in Zahlenfolgen erkennen
Die Schülerinnen und Schüler lernen, mathematische Regeln hinter Zahlenfolgen zu erkennen und zu beschreiben.
Schwierigkeitsgrad: leicht / mittel / anspruchsvoll (gemischt)
Typische Fehler in diesem Kapitel:
- Ziffern werden beim Schreiben großer Zahlen vertauscht.
- Beim Vergleichen wird nicht auf die höchste Stelle geachtet.
- Beim Runden wird die falsche Stelle betrachtet.
- Nachbarzahlen werden fälschlich um Zehner oder Hunderter verändert.
- Die Regel einer Zahlenfolge wird nicht konsequent angewendet.